Получить доступ
Эксклюзивный партнер
Karpov.Courses в Казахстане
burger
Каталог Аналитика и Data Science Инженер машинного обучения

MACHINE LEARNING ДЛЯ НАЧИНАЮЩИХ. ОБУЧЕНИЕ У НАС

Поможем с нуля освоить одну из самых популярных IT-профессий
ФОРМАТ ОБУЧЕНИЯ
ОНЛАЙН
Формат обучения Start ML
КОМУ ПОДОЙДЁТ
С НУЛЯ
Кому подойдет курс
НЕРСЕС БАГИЯН
СТАРТ ПРОГРАММЫ
Старт программы машинного обучения для начинающих
КАЖДЫЙ МЕСЯЦ

01

дней

02

часов

03

минут

04

секунд

ПОЛУЧИТЕ НЕОБХОДИМУЮ
БАЗУ В СФЕРЕ

ML-инженер — это специалист, который находится на стыке анализа данных и разработки. Он должен уметь писать код, строить математические модели и понимать потребности бизнеса.

Мы составили программу курса таким образом, чтобы любой желающий без сильной математической подготовки смог разобраться со всеми этапами работы: от сбора данных и применения классических алгоритмов до обучения нейросетей и проведения A/B-тестов.

Одним словом, у вас в руках перед вами — исчерпывающий starter pack в ML и Data Science.
Преподаватель курса ML-инженера Нерсес Багиян
НЕРСЕС БАГИЯН
Head of Data Science Raiffeisen CIB, хедлайнер курса

Чем занимаются ML-Инженеры:

/Анализируют
большие объёмы данных и ищут в них закономерности.
модели машинного обучения и нейронные сети, которые помогают бизнесу принимать решения.
приложения и инфраструктуру для автоматизации работы ML-решений.
влияние новых алгоритмов на продукт и проводят эксперименты.
/создают
/ОЦЕНИВАЮТ
/Разрабатывают

КОМУ ПОДОЙДЁТ ЭТОТ КУРС:

НОВИЧКАМ
Хотите освоить машинное обучение, но не знаете, с чего начать. Курс даст все необходимые знания.
МАТЕМАТИКАМ
Увлекаетесь математикой и точными науками, но хотите перейти от теории к практике и научиться решать реальные бизнес-задачи.
АНАЛИТИКАМ
Уже работаете с данными, но хотите освоить продвинутые методы и инструменты, чтобы выйти на качественно новый уровень в аналитике.
РАЗРАБОТЧИКАМ
Имеете опыт в программировании и разработке приложений, но хотите применить свои знания в новой области и научиться выявлять потребности бизнеса.

ВАШЕ НАВЫКИ == ЧЕРЕЗ 7 МЕСЯЦЕВ

МАРИЯ ОСТРИКОВА
Junior ML-инженер
Умею разрабатывать приложения на Python, знаю основы объектно-ориентированного программирования. Владею библиотеками для анализа данных и машинного обучения: pandas, numpy, matplotlib, seaborn, scipy, sklearn

Знаю синтаксис SQL, умею составлять запросы к базам данным и работать с SQLAlchemy

Знакома с основами backend-разработки и фреймворком FastAPI.
Использую Git для версионирования приложений и работы над проектами.
Применяю Airflow для автоматизации регулярных задач

Знаю классические ML-алгоритмы и умею строить ML-модели для решения задач регрессии, классификации и кластеризации

Имею опыт применения продвинутых ML-моделей на основе градиентного бустинга: CatBoost, LightGBM, XGBoost

Знакома с нейронными сетями и библиотекой PyTorch*. Умею решать задачи по работе с текстами и изображениями: классификация, детекция объектов, распознавание лиц, генерация текстов

Разбираюсь в основах теории вероятностей и математической статистики. Знаю основные статистические критерии и условия их применимости

Умею проводить A/B-тесты и оценивать влияние ML-моделей на продукт. Понимаю, как рассчитываются объём выборки, величина эффекта и продолжительность эксперимента

КАК ПРОХОДИТ ОБУЧЕНИЕ:

УЗНАВАЙТЕ ПОДРОБНЕЕ О КУРСЕ

Преподаватели расскажут о курсе, обсудят каждый модуль, его ценность и особенности использования полученных знаний в дальнейшей работе.

ФОРМАТ ОБУЧЕНИЯ

Обучение проходит в интенсивном формате по 3 занятия в неделю
Домашние задания выполняются на настоящей инфраструктуре
Все лекции и дополнительные материалы доступны на образовательной платформе и остаются у вас после окончания курса
На учёбу наши студенты тратят в среднем 20 часов в неделю

ФОКУСИРУЙТЕСЬ НА ПРАКТИКЕ

Мы включили в программу теорию по математике в необходимом для практики объеме. Помимо отдельного блока по статистике, математика встречается в уроках по машинному обучению – там, где она пригождается ML-специалисту. Ничего учить отдельно не придется, мы уже подобрали лучшие материалы и задания за вас.

Мы добавили как можно больше приближенных к реальности заданий, чтобы задачи на работе не оказались для вас сюрпризом.

РАБОТАЙТЕ НАД РЕАЛЬНЫМ ПРОЕКТОМ

Вы построите систему ранжирования постов в социальной сети. Над проектом вы будете работать на протяжении всего курса, выполняя задания по мере изучения необходимой теории. Вы освоите важнейшие области машинного обучения (от табличных данных до картинок) и познакомитесь с промышленной разработкой. В итоге вы создадите API, которое выбирает самые релевантные посты для каждого клиента.

ИСПОЛЬЗУЙТЕ НАШУ ИНФРАСТРУКТУРУ

Работайте во всех необходимых инструментах на нашей инфраструктуре. Вам не придется устанавливать ПО на свой компьютер, мы предоставляем доступ ко всем технологиям
Практикуйтесь на данных из реальных задач
Изучайте решения преподавателей и других студентов

ЗАДАВАЙТЕ ЛЮБЫЕ ВОПРОСЫ В ПОДДЕРЖКУ

Обсуждайте задачи и проекты с экспертами рынка
Вашими менторами будут ML-инженеры из ведущих российских компаний
ФОРМАТ ОБУЧЕНИЯ
 Обучение проходит в интенсивном формате по 3 занятия в неделю
 Домашние задания выполняются на настоящей инфраструктуре
 Все лекции и дополнительные материалы доступны на образовательной платформе и остаются у вас после окончания курса
 На учёбу наши студенты тратят в среднем 20 часов в неделю
ФОКУСИРУЙТЕСЬ НА ПРАКТИКЕ
 Мы включили в программу теорию по математике в необходимом для практики объеме. Помимо отдельного блока по статистике, математика встречается в уроках по машинному обучению – там, где она пригождается ML-специалисту. Ничего учить отдельно не придется, мы уже подобрали лучшие материалы и задания за вас.
Мы старались включить как можно больше приближенных к реальности заданий, чтобы задачи на работе не оказались для вас сюрпризом.
 Мы старались включить как можно больше приближенных к реальности заданий, чтобы задачи на работе не оказались для вас сюрпризом.
РАБОТАЙТЕ НАД РЕАЛЬНЫМ ПРОЕКТОМ
Проект заключается в построении системы ранжирования постов в социальной сети. Вы будете работать над ним на протяжении всего курса, выполняя задания по мере изучения необходимой теории. Вы освоите важнейшие области машинного обучения (от табличных данных до картинок) и познакомитесь с промышленной разработкой. В итоге вы создадите API, которое выбирает самые релевантные посты для каждого клиента.
ИСПОЛЬЗУЙТЕ НАШУ ИНФРАСТРУКТУРУ
 Работайте во всех необходимых инструментах на нашей инфраструктуре. Вам не придется устанавливать ПО на свой компьютер, мы предоставляем доступ ко всем технологиям
 Практикуйтесь на данных из реальных задач
 Изучайте решения преподавателей и других студентов
ЗАДАВАЙТЕ ЛЮБЫЕ ВОПРОСЫ В ПОДДЕРЖКУ
— Обсуждайте задачи и проекты с экспертами рынка
Вашими менторами будут ML-инженеры из ведущих российских компаний

КАКИЕ ИНСТРУМЕНТЫ ВЫ ОСВОИТЕ

ПРОГРАММА КУРСА ://

УЧИТЕСЬ У <ЛУЧШИХ>

Преподаватель онлайн курса Start ML Нерсес Багиян
НЕРСЕС БАГИЯН
Руководитель направления продвинутой аналитики в Raiffeisen CIB. Преподаватель машинного обучения ФКН НИУ ВШЭ. Выпускник школы анализа данных от Яндекса. Ранее прошёл путь от стажера до старшего аналитика в Яндекс. Маркете за 2 года.
Head of DS в Raiffeisen CIB
Преподаватель курса Start ML для начинающих Алексей Кожарин
АЛЕКСЕЙ КОЖАРИН
Работал ML-инженером в Райффайзенбанке, занимался процессингом данных, построением моделей и автоматизацией ML-проектов. Сейчас работает backend-разработчиком в Яндекс.Диске
Backend Яндекс.Диск
Модули >>>
Преподаватель курса Start ML Никита Табакаев
НИКИТА ТАБАКАЕВ
Занимается продуктовой аналитикой и построением моделей машинного обучения в корпоративно-инвестиционном подразделении Райффайзенбанка.
Аналитик Raiffeisen CIB
Модули >>>
Преподаватель курса Start ML Алексей Биршерт
АЛЕКСЕЙ БИРШЕРТ
Занимается построением моделей динамического ценообразования в корпоративно-инвестиционном подразделении Райффайзенбанка. Исследователь в области обработки естественного языка.
Аналитик Raiffeisen CIB
Модули >>>
Преподаватель курса Start ML Эмиль Каюмов
ЭМИЛЬ КАЮМОВ
Отвечает за рекомендации и прогнозы для задач эффективности Яндекс.Еды. Ранее запускал рекомендации и прогнозы времени доставки в Яндекс.Лавке, занимался задачами продукта Яндекс.Такси.
Head of ML Яндекс.Еда
Модули >>>

ОТЗЫВЫ СТУДЕНТОВ /

  • Благодарю создателей курса за вполне качественный курс по основам машинного обучения.

    Изначально я хотел получить знания в области машинного обучения. Первые два блока очень понравились, все 4 месяца с удовольствием учился на курсе.

    Читать полностью
    Тимур, теплоэнергетик
  • Спасибо большое всей команде, вы делаете крутой продукт!
    
    Курс очень интересный и интенсивный. Было сложно, особенно в модуле по глубинному обучению, но я надеюсь заполнить пробелы в будущем. Очень здорово, что все материалы остаются с нами и к ним можно вернуться.

    Читать полностью
    ЕЛЕНА, BI-аналитик
  • Спасибо большое всей команде, вы делаете крутой продукт!
    
    Курс очень интересный и интенсивный. Было сложно, особенно в модуле по глубинному обучению, но я надеюсь заполнить пробелы в будущем. Очень здорово, что все материалы остаются с нами и к ним можно вернуться.

    Читать полностью
    ЕЛЕНА, BI-аналитик
  • Благодарю создателей курса за вполне качественный курс по основам машинного обучения.
    
    Изначально я хотел получить знания в области машинного обучения. Первые два блока очень понравились, все 4 месяца с удовольствием учился на курсе.

    Читать полностью
    Тимур, теплоэнергетик
Записаться на курс
-10%
50 085 ₸/мес
55 650 ₸/мес
В рассрочку на 12 мес
Скидка по промокоду:
Кешбэк 5%: 30 051 балл на Lerna
Инженер машинного обучения
Длительность: 7 мес
Заполните контактные данные
Имя
Телефон
E-mail
Промокод
Название компании
Отправить заявку
Ознакомиться с условиями публичного договора
success
error
warning

FAQ